The unique amino-terminal region of the PDE4D5 cAMP phosphodiesterase isoform confers preferential interaction with beta-arrestins.
نویسندگان
چکیده
Isoproterenol challenge of Hek-B2 cells causes a transient recruitment of the endogenous PDE4D isoforms found in these cells, namely PDE4D3 and PDE4D5, to the membrane fraction. PDE4D5 provides around 80% of the total PDE4D protein so recruited, although it only comprises about 40% of the total PDE4D protein in Hek-B2 cells. PDE4D5 provides about 80% of the total PDE4D protein found associated with beta-arrestins immunopurified from Hek-B2, COS1, and A549 cells as well as cardiac myocytes, whereas its overall level in these cells is between 15 and 50% of the total PDE4D protein. Truncation analyses indicate that two sites in PDE4D5 are involved in mediating its interaction with beta-arrestins, one associated with the common PDE4 catalytic region and the other located within its unique amino-terminal region. Truncation analyses indicate that two sites in beta-arrestin 2 are involved in mediating its interaction with PDE4D5, one associated with its extreme amino-terminal region and the other located within the carboxyl-terminal domain of the protein. We suggest that the unique amino-terminal region of PDE4D5 allows it to preferentially interact with beta-arrestins. This specificity appears likely to account for the preferential recruitment of PDE4D5, compared with PDE4D3, to membranes of Hek-B2 cells and cardiac myocytes upon challenge with isoproterenol.
منابع مشابه
cAMP-specific phosphodiesterase-4D5 (PDE4D5) provides a paradigm for understanding the unique non-redundant roles that PDE4 isoforms play in shaping compartmentalized cAMP cell signalling.
The PDE4 (phosphodiesterase-4) enzyme family consists of a distinct array of N-terminal splice variant isoforms arising from four subfamily genes (4A, 4B, 4C and 4D). These all hydrolyse specifically the intracellular second messenger cAMP. Although identical in catalytic function, each isoform appears to serve a non-superfluous regulatory role. For example, a beta-arrestin-sequestered subpopul...
متن کاملScanning peptide array analyses identify overlapping binding sites for the signalling scaffold proteins, beta-arrestin and RACK1, in cAMP-specific phosphodiesterase PDE4D5.
The cAMP-specific phosphodiesterase PDE4D5 can interact with the signalling scaffold proteins RACK (receptors for activated C-kinase) 1 and beta-arrestin. Two-hybrid and co-immunoprecipitation analyses showed that RACK1 and beta-arrestin interact with PDE4D5 in a mutually exclusive manner. Overlay studies with PDE4D5 scanning peptide array libraries showed that RACK1 and beta-arrestin interact ...
متن کاملMapping binding sites for the PDE4D5 cAMP-specific phosphodiesterase to the N- and C-domains of beta-arrestin using spot-immobilized peptide arrays.
Beta2-ARs (beta2-adrenoceptors) become desensitized rapidly upon recruitment of cytosolic beta-arrestin. PDE4D5 (family 4 cAMP-specific phosphodiesterase, subfamily D, isoform 5) can be recruited in complex with beta-arrestin, whereupon it regulates PKA (cAMP-dependent protein kinase) phosphorylation of the beta2-AR. In the present study, we have used novel technology, employing a library of ov...
متن کاملThe role of ERK2 docking and phosphorylation of PDE4 cAMP phosphodiesterase isoforms in mediating cross-talk between the cAMP and ERK signalling pathways.
PDE4 cAMP phosphodiesterases are widely expressed enzymes that serve as major regulators of cAMP signalling in cells. They provide targets for therapeutics having anti-inflammatory and cognitive-enhancing properties. ERK2 (extracellular-signal-regulated kinase 2) interacts with the PDE4 catalytic unit by binding to a KIM (kinase interaction motif) docking site located on an exposed beta-hairpin...
متن کاملDimerization of cAMP phosphodiesterase-4 (PDE4) in living cells requires interfaces located in both the UCR1 and catalytic unit domains
PDE4 family cAMP phosphodiesterases play a pivotal role in determining compartmentalised cAMP signalling through targeted cAMP breakdown. Expressing the widely found PDE4D5 isoform, as both bait and prey in a yeast 2-hybrid system, we demonstrated interaction consistent with the notion that long PDE4 isoforms form dimers. Four potential dimerization sites were uncovered using a scanning peptide...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 278 49 شماره
صفحات -
تاریخ انتشار 2003